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Abstract 
 
 A theory of yielding and failure for homogeneous and isotropic materials is given.  
The theory is calibrated by two independent, measurable properties and from those it 
predicts possible failure for any given state of stress.  It also differentiates between 
ductile yielding and brittle failure.  The explicit ductile-brittle criterion depends not only 
upon the material specification through the two properties, but also and equally 
importantly depends upon the type of imposed stress state.  The Mises criterion is a 
special (limiting) case of the present theory.  A close examination of this case shows that 
the Mises material idealization does not necessarily imply ductile behavior under all 
conditions, only under most conditions.  When the first invariant of the yield/failure 
stress state is sufficiently large relative to the distortional part, brittle failure will be 
expected to occur.  For general material types, it is shown that it is possible to have a 
state of spreading plastic flow, but as the elastic-plastic boundary advances, the 
conditions for yielding on it can change over to conditions for brittle failure because of 
the evolving stress state.  The general theory is of a three dimensional form and it applies 
to full density materials for which the yield/failure strength in uniaxial tension is less than 
or at most equal to the magnitude of that in uniaxial compression. 
 



Introduction and Objective 
 
 The failure of materials generates research at all length scales from the electronic 
state to the atomic scale to nano to micro and on to macro (macroscopic) scales.  The 
resulting information is considerably enhanced when the effects at the various scales can 
be interrelated.  Usually the intention is to produce a particular result at the macro scale 
with this behavior being controlled by the mechanisms operative at the smaller scales.  
However, it can be difficult to confidently and securely approach the intended macro 
scale when its characterization is so shrouded in doubt and uncertainty.  It would be 
highly advantageous to have a complete and comprehensive account of failure at the 
macro scale, one which transcends the various materials classes.  The alternative is to 
have descriptors that are unique to each class or sub-class of materials but with great 
uncertainty as to the range and limits of validity of each characterization.  This latter 
condition represents the current status. 
 
 The objective here is to present and then probe a reasonably complete macroscopic 
theory of yielding and failure for homogeneous and isotropic materials. Much of the 
formalism will be synthesized here from various publications that have recently appeared 
but of necessity have been given in somewhat fragmented and unrelated forms.  Using 
this new formulation, new results will be found for the yielding, plastic flow and failure 
in several important problems or classes of problems.  This communication completes the 
cycle of recent papers on the failure of materials mentioned above and this also will be 
the final published paper by the author.  In whatever direction future work in the field 
goes, the present work may help to stimulate further interest and related activity.   
 
 It is an evident irony of the history of mechanics that the many books written on the 
strength of materials basically had almost nothing to do with that subject.  Such books 
were virtually confined to the linear range of elastic behavior with minimal or no 
attention to failure.  This occurred because the understanding of failure as an organized 
discipline was non-existent.  This state continued until the advent of fracture mechanics, 
about which more will be said later.  The sparse historical scene of successful research 
upon materials failure did have one major prominence and this account should begin by 
acknowledging the subtle but profound contribution of Coulomb (1773).  Mohr (1914) 
put Coulomb’s failure result into a form allowing easy utility.  The fact that the Coulomb-
Mohr failure form does not successfully account for many of the physical effects does not 
detract from the efforts of either scientist.  In the time frames of their separate works, 
their grasp of the problem was completely beyond compare.  Later, the Mises criterion 
was given, Mises (1913), but only as an adjunct to a special case of the Coulomb 
criterion, namely the Tresca form.  Both the Mises and Tresca criteria apply only to the 
yielding of very ductile metals.  The Coulomb-Mohr form was intended to apply across 
the spectrum of materials types, as is the interest here.  A history of strength and failure 
treatments has been given by Paul (1968), and a brief historical summary by Christensen 
(2004). 
 
 At the most elementary level it is sometimes said that ceramics are brittle, many but 
not all metals are ductile, and some types of polymers are ductile and others are brittle.  



While there is a degree of truth in this assertion, it can be extremely misleading, or even 
worse.  An example will be given later wherein a material commonly considered as being 
completely ductile when placed in a particularly important special state of stress fails in a 
brittle manner.  Relative to failure, all materials can behave either in a ductile or a brittle 
manner depending upon the state of stress that they are under and other environmental 
influences. 
 
 The two terms, yielding and failure, have imprecise definitions that usually allow a 
wide latitude of interpretation.  This imprecision underlies an uncertain basis of 
operation.  The obvious exception to this situation was the development of fracture 
mechanics.  Fracture mechanics was one of the technical achievements of modern 
mechanics.  A typical application of fracture mechanics involves determining the 
stability, under imposed stress, of imperfections and stress risers such as cracks and edge 
notches, holes, attachments etc.  In contrast, the means of applying fracture mechanics to 
the problem of the failure of homogeneous materials under uniform stress states has been 
far less clear.  There are many opinions on this subject, but little substance beyond 
general statements.  Thus, for the failure of homogeneous materials, the integration of 
fracture mechanics into a more general formalism has not been successfully 
accomplished in the past. 
 
 Failure criteria have usually been formulated in terms of stresses, but over the 
historical time span, failure criteria have occasionally been postulated in terms of strains.  
The view here is that trying to specify failure in terms of strains is inappropriate and 
internally inconsistent.  Stress must be used in order to have compatibility with fracture 
mechanics in the brittle range and with dislocation mechanics in the ductile range.  To not 
have union with these two anchor points of physical reality would be extremely serious.  
Furthermore, force (stress) is the greatly preferred form for molecular dynamics 
simulations.  Stress, not strain, will be used here for these well grounded reasons. 
 
 In the modern era there have been many attempts to find criteria more general than 
just that for the perfectly ductile response or alternatively the fracture controlled 
response.  The references cited above give many previous references to such works.  A 
sampling of these efforts should include the following.   Drucker and Prager (1952) gave 
a two-parameter yield criterion of conical form in principle stress space.  Paul (1968) 
proposed a three-parameter pyramidal type yield surface.  Wronski and Pick (1977) 
applied Paul’s criteria to polymers.  Raghava, Caddell and Yeh (1973) proposed a 
criterion similar to parts of the present forms, and applied it to polymers.  Stassi (1967) 
also discussed similar forms, but without application.  Pae (1977) applied a three-
parameter criterion to polymers.  Wilson (2002) applied the Drucker-Prager criterion to 
metals.  Jaeger and Cook (1979) discussed many three or more parameter models for 
application to geological materials.  None of these approaches possess the combined 
attributes of involving only a few adjustable parameters, preferably only two, along with 
the power and flexibility to re-create many different physical effects for many different 
types of materials.  Also, none of these works deal with the essential problem of 
providing indicators (for any stress state of interest) that differentiate a materials 



capability for undergoing ductile flow as opposed to the undesirable outcome of brittle 
failure. 
 
 The present work will give specific meanings to the terms yielding and failure, ones 
that will offer a useful distinction between them.  There are two technical keys to the 
following developments.  These are:  (i) the explicit integration of a fracture mechanism 
into the yielding versus failure formalism, and (ii) the derivation of an explicit criterion 
that determines whether a failure mode in any particular state of stress is expected to be 
of ductile or brittle nature.  Not surprisingly, these developments (i) and (ii) are found to 
be interrelated, but still take separate forms in the final set of equations and conditions. 
 
 Next the governing relations of this new theory will be given. 
 



Conditions for Yielding and Failure 
 
 The references from which various aspects at this new theory of yielding and failure 
are collected are Christensen (1997, 2000, 2004, 2005, 2006a, 2006b).  The initial work 
in 1997 identified a non-dimensional properties grouping that spanned the range from 
completely ductile to very brittle behaviors.  The year 2000 work was a view of ductile 
versus brittle behavior, approached in a very mathematical formalism.  A broader 
treatment in 2004 brought in an explicit fracture mechanism and involved comparison 
with experimental results for a wide variety of materials types.  In 2005 an explicit 
criterion was derived for distinguishing expected brittle failure behaviors from those of 
plastic yielding, expressed in terms of the imposed stress state and a particular material 
characteristic.  The first 2006 work was an examination of plastic flow potentials, needed 
when the condition of ductile behavior exists.  The second 2006 work involved a detailed 
comparison with the Coulomb-Mohr and Drucker-Prager (1952) theories.  The collection 
of these individual works and particularly the present amalgam of all of them serve to 
form this comprehensive account of yielding and brittle failure. 
 
 The mathematical conditions to be given in this section for yielding and failure are 
primarily taken from the above references, but for the background details, the particular 
references should be consulted.  A uniform notation and terminology will be adopted.  In 
this section and the following sections some previously open issues will be clarified and 
closed, some important special problems will be examined and some critical 
interpretations given. 
 
 The governing yield/failure function for isotropic materials was found by taking a 
polynomial expansion, through terms of 2nd degree, of the invariants of the stress tensor.  
This procedure gives 
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C and T are the uniaxial yield/failure stresses in compression and tension.  Alpha, 

� 

! , is 
the non-dimensional properties grouping that affords special advantages. 



 
 When the yield/failure in uniaxial compression is not to be used, 
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!  and 
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!  will be 
shown later to take other forms.  Relation (1) as written out in terms of components is 
given in the last section. 
 
 Relation (1) is part of the governing criteria, the other essential part is an explicit 
fracture criterion given by 
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or in dimensional form 
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where 

� 

! 1 is the largest principle stress.  The relationships of (1) and (3) to some historical 
criteria as well as their physical interpretations will be given at the end of this section and 
in the following section. 
 
 The two criteria (1) and (3) in the range of 

� 

! " 1 are both employed to find whichever 
of the two is the more limiting.  Also, the two relations (1) and (3) are in some sense 
coupled through the appearance of 

� 

!  in both of them.  For 

� 

! " 1 relation (1) stands alone.  
It is best to view the variation of 

� 

!  on a log scale having the range from -

� 

!  to 

� 

! .  Then 
the value 

� 

!  = 1 in (3) designates the center of the log scale range, log 

� 

!  = 0.  This center 
point is where the fracture criterion (3) begins to take effect.  Compared with the 
yield/failure criterion (1), the fracture criterion (3) can be shown to only have an 
infinitesimal difference from (1) in the immediate vicinity of 

� 

!  = 1, log 

� 

!  = 0, but it 
becomes of increasing significance as 

� 

!  increases beyond this value. 
 
 The fracture restriction (3) naturally corresponds to brittle behavior, but under certain 
conditions relation (1) also can embody brittle failure characteristics.  This is why the 
form in (1) is termed as the yield/failure function.  This condition is shown schematically 
in Fig. 1 for biaxial stress states with 

� 

!  = 2.  The intersection of the yield function in (1) 
and the fracture condition in (3) establishes the division into ductile and brittle regions.  It 
is seen in Fig. 1 that the mean normal stress part of the failure stress state locates the 
position of the ductile/brittle dividing line.  This ductile-brittle delineation generalizes 
directly to tri-axial stress conditions and gives the D-B criterion as  
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where 
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ii is found from the stresses satisfying relation (1) as an equality and 
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!  is taken 
over its full range.  That is, 

� 

!

"

ii is the first stress invariant (mean normal stress) of the 
yield/failure stress state.  The right hand side of (4) specifies the material type through the 
value of 

� 

! , while the left hand side specifies the part of the yield/failure stress state that 
controls whether the behavior will be brittle or ductile.   
 
 The region near the dividing line between ductile and brittle behavior specified by (4) 
is in reality likely to be transitional rather than discontinuous.  Furthermore, this region is 
more likely to be dominated by the brittle inclination than by the plastic flow tendency.  
As a separate matter, any time the fracture criterion (3) is controlling, that by definition is 
a brittle behavior.  These general behaviors are similar to those modeled by Harlin and 
Willis (1988) wherein they used macroscopic criteria with the involvement of tri-axial 
stress conditions to distinguish the ductile from the brittle response of growth activated 
cracks. 
 
 Relations (1)-(4) comprise the entire yield/failure criteria.  Only two properties are 
involved, the uniaxial tensile and compressive yield/failure values.  Strain hardening 
could be involved in this methodology, but it is not included here in order to focus upon 
the essential but idealized aspects of the ductile versus brittle behavior.  The yield stress 
in a ductile behavior is taken to be that at the point of major deviation between the 
previous elastic region and the following plastic flow region.  The idealized behavior is 
as shown in Fig. 2.  It is clear that in the context of the brittle and ductile behaviors of 
Fig. 2 stress alone cannot distinguish between the three conditions of: (i) brittle failure, 
(ii) ductile yield or (iii) ductile failure.  Thus, it is necessary to have the separately 
determined criterion to distinguish brittle from ductile response.  The complete theory 
does not predict the strain at failure after ductile flow, only that such a flow state exists.  
In some cases the amount of plastic flow before failure may be very small and it may be 
somewhat difficult to distinguish these cases from brittle failure. 
 
 It is to be expected that the ductile-brittle criterion (4) would be controlled by the 
mean normal stress part of the total stress tensor at yield or failure.  This is similar to and 
in fact related to the effect of temperature on the same ductile, brittle behaviors, see also 
Harlin and Willis (1988).  Temperature and pressure are the two most fundamental 
control variables for such effects.  Again it is emphasized that in physical reality there 
would not be an abrupt dividing line between the two states, but rather a region or band 
of most rapid variation from ductile to brittle. 
 
 To complete this theory it is necessary to specify the governing characteristics of 
plastic flow when criteria (4) specifies that the ductile regime controls.  Following Hill 
(1950) the plastic flow potential is necessarily taken to be different from the yield/failure 
function, in (1), thereby leading to a non-associative form.  The decomposition of strain 
components into elastic and plastic parts then has the plastic strain increments given by 
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where G is the independent plastic flow potential.  It was found (in the previous 
references) that for homogeneous materials G takes the form 
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where A is a constant, an order of magnitude less than one, and with considerable support 
for a value of about A 

� 

!  1/15, from the data of Richmond and colleagues, Spitzig, Sober 
and Richmond (1975), Spitzig, Sober and Richmond (1976) and Spitzig and Richmond 
(1979).  The hypothetical value, A = 1, would correspond to the associative form.  The 
dilatational term in (6) is due to the mechanism by which materials in plastic flow create 
a small amount of voids and vacancies. 
 
 In most (but not all) situations and for most homogeneous and isotropic materials the 
first term in (6) is small compared with the second term because of the smallness of 
constant A and can be neglected leaving 
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which gives the plastic flow potential as being completely distortional in character.  In (7) 
the 3/2 factor in (6) is absorbed into 

� 

! in (5). 
 
 This is a two-property theory calibrated by the uniaxial tensile and compressive 
yield/failure values.  It should be noted that the uniaxial compressive test can be difficult 
to perform.  See Lassila et al (2002) for a detailed account of the measures and care 
needed to produce a reliable test for uniaxial compression.  An example of an alternative 
set of two independent yield/failure prescriptions is that of uniaxial tension and uniaxial 
tension under pressure.  In this case it can be shown that 
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!  are given by  
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with p being the pressure and T being the uniaxial tensile yield/failure stress 
superimposed upon p.  The restriction in (8) to the range 

� 

! " 1 can be removed, but with 
some additional involvement of fracture relation (3) in the range 

� 

! " 1. 
 



 Finally, it should be noted that if the fracture criterion (3) were used as a stand-alone 
criterion it would correspond to the maximum normal stress criterion favored by Rankine 
and by Lamé.  That criterion did not succeed as a single, all encompassing criterion, but it 
certainly has a special and vital role to play here as a restriction tightly coordinated with 
the yield/failure function (1).  With regard to macroscopically homogeneous materials, 
the fracture criterion (3) is here seen as effectively a Mode I fracture event activated by 
whatever inhomogeneities control the behavior on the micro-scale.  Since this theory is 
only for macroscopically homogeneous and isotropic materials, the microscale 
inhomogeneities possibly causing fracture must not disturb the macroscale conditions of 
homogeneity and isotropy.  It also follows that any initial microscale porosity must be 
small. 
 



General Characteristics 
 
 Cases represented by the limiting values of 

� 

!  will be discussed as well as some 
intermediate values of 

� 

! .  The case of 

� 

! = 0 leaves the yield/failure function in (1) as 
reducing to the Mises criterion.  This 

� 

! = 0 case will be referred to as that of a Mises 
material.  It is commonly accepted that a Mises material is the example of a perfectly 
ductile solid, this implying that there exists ductility under all conditions.  However, the 
present results show that this notion is not correct.  The ductile-brittle criterion (4) is not 
always satisfied as being ductile for 

� 

! = 0.  In fact, it can be shown that criterion (1) and 
(4) reveal that in principle stress space the infinite cylindrical form of the Mises criterion 
has ductile and brittle regions as shown in Fig. 3.  The case of uniaxial tension is on the 
ductile side of the D-B dividing plane in Fig. 3 as are most of the common stress states 
such as unequal biaxial stresses.  But the special case of equal biaxial tension is right on 
the dividing line between the ductile and brittle regions.  More will be said about this 
important case later.  As seen from Fig. 3 any stress state at yield/failure with a 
sufficiently large tensile hydrostatic component will be brittle.  An example is as follows.  
When a high intensity compressive dilatational wave reflects from a free surface it 
creates a large tri-axial tensile stress state condition.  This can cause micro-scale void 
nucleation as a precursor to the macro-scale brittle failure condition of spallation, even 
for what are normally thought of as ductile materials. 
 
 For values of 
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! > 0 the yield/failure function (1) is a paraboloid in principle stress 
space, Fig. 4.  Its axis makes equal angles with the three principle stress axes.  For 
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! > 1 
the fracture criterion (3) comes into effect.  Right at 

� 

! = 1 the three planes prescribed by 
the fracture criterion (3) are just tangent to the yield/failure paraboloid.  As 

� 

!  increases 
beyond 

� 

! = 1 the fracture criterion takes three slices out of the paraboloid.  These are 
here called fracture cut offs.  An illustration of these fracture cut-offs at 

� 

! = 2 is shown 
in Fig. 1 for biaxial stress, with this value of 

� 

!  being typical of cast iron.  The paraboloid 
is divided into ductile and brittle regions by its intersection with the plane normal to its 
axis prescribed by (4).  This ductile-brittle division must also deviate around the fracture 
cut-offs prescribed by (3). 
 
 The limiting case of 
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! "#  is the brittle limit with the tensile strength T being 
negligible compared with the compressive strength C.  This limiting case is perhaps best 
viewed through the shear stress at yield/failure.  From (1) the shear stress 
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!  at 
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! "#  is 
very small compared with C.  Now consider a state of shear stress 

� 

!  superimposed upon 
pressure p.  From (1) at 
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! "#  the yield/failure shear stress under pressure is given by 
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The associated ductile-brittle criterion (4) gives the result 
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The fracture criterion (3) gives 
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which is by definition brittle. 
 
 Conditions (9)-(11) give the complete behavior as 
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Relations (12) are shown in Fig. 5.  Again, at p = 0 the material cannot sustain any shear 
stress.  Sufficiently large pressure supports a ductile behavior in shear.  The case just 
considered corresponds to the condition 
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!
ii
" 0 .  For the condition of positive mean 

normal stress, 
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> 0 , as 

� 

! "# , relation (1) can be used to show that it becomes just  
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This relation is more restrictive than the fracture condition (3) and from (4) it is of a 
brittle nature.  The physical interpretation of (13) is that approaching this brittle limit of 

� 

! "#  any stress state with positive 

� 

!
ii
 satisfying (13) as an equality causes the material 

to disassociate and disintegrate.  Although it is important to verify reasonable and rational 
behavior in the limiting case of 

� 

! "# , probably the practical maximum range for 
applicability of this theory would be for ceramics and glasses.  These materials would 
have values of 

� 

!  from about 5 to 25. 
 
 Now, two general examples will be given, first an equal biaxial stress state and then 
unequal biaxial stresses in a 2:1 ratio.  For equal biaxial stresses let 
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The yield/failure criterion (1) gives 
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For the case of tension and at 
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! = 0 then (15) gives 
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= 1.  With this result then it follows 
that the left hand side of (4) is given by  
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The right hand side of the ductile-brittle criterion (4) at 

� 

! = 0 is simply 2.  Thus at 

� 

! = 0 
and in equal biaxial tension the yield/failure state is borderline between being ductile or 
brittle.  For 

� 

! > 0 it is always brittle thus for all values of 

� 

!  
 
  Equal Biaxial Tension 

� 

! Brittle 
 
 Using (15) in the case of compression with criterion (4) then gives for all values of 

� 

!  
 
  Equal Biaxial Compression 

� 

! Ductile 
 
The significance of this result that equal biaxial tension is brittle is that this is the stress 
state existing in thin spherical pressure vessels.  The failure is of brittle type, even though 
the material, such as aluminum for example, is nominally considered as being ductile.  
Thus thin spherical pressure vessels can represent a considerable safety hazard no matter 
how ductile the composing material may be, in accordance with practical experience. 
 
 The example just considered suggests looking at the case of cylindrical pressure 
vessels.  In the thin cylindrical portion of the pressure vessel the stress state is given by 
biaxial stresses with 
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The yield failure criterion (1) gives 
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Using the stress states for tension and compression from (17) in the ductile-brittle 
criterion (4) gives 
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for all values of 
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! . In the tensile case, the D-B dividing line at 

� 

! = 1/2  corresponds to 
T/C = 2/3, which is right in the range of many polymers. 
 
 In both of these latter two examples symbolic of thin shell pressure vessels, the 
fracture criterion (3) is not as limiting as the results shown above from the yield/failure 



criterion (1).  These examples are for the two different bi-axial stress states.  When 
interpreted for application to thin shell pressure vessels, only the tensile conditions would 
be meaningful.   Instability would supercede the compressive yield results. 
 



Lame´ Problems 
 
 Now consider more complex three-dimensional problems with non-uniform stresses.  
The Lame´ problems for thick cylinders and spheroids are the classical problems of this 
type.  In particular a thick spherical annulus with internal or external pressure will be 
considered. 
 
 The internal pressurization of the spherical annulus is as shown in Fig. 6.  In the case 
of an ideal Mises material the complete solution is given by Hill (1950).  The solution for 
the more general material model involving yield and or failure governed by  (1)-(7) will 
be developed here.  For sufficiently small pressures the entire region will be elastic, but at 
some pressure the material at the inner radius will commence yielding, and as pressure 
further increases the elastic plastic boundary at r = 

� 

!, Fig. 6, will move outward. 
 
 The stress solution for the entire elastic deformation case is given by 
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where p is the internal pressure. 
 
 Now find the pressure at which yielding first commences at r = a.  The yield/failure 
function (1) becomes 
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Combining (18) and (19) at r = a gives the pressure for initial yielding as 
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The symbol 
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!  used here should not be confused with that in (5). 
 
 Next, the question of whether this initial yielding is actually of ductile yielding or 
brittle failure must be answered.  Using the stresses at r = a in the ductile-brittle criterion 
(4) gives 
 

  

3 p
!

b

a

"
#$

%
&'

3

(1

<
2 ()
1+)

   ,   Ductile

 
   (21) 

  

3 p
!

b

a

"
#$

%
&'

3

(1

>
2 ()
1+)

   ,   Brittle

 
 
where 

� 

p
!

 is given by (20).  Interest here will be confined to cases of 

� 

! " 1, thus the 
fracture criterion (3) does not enter the considerations.  Materials with 

� 

! > 1 would 
almost never be used in applications of internal pressurization since they would be too 
brittle.  Combining (20) and (21) gives 
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For example for 

� 

! = 1 (22) became 
 

  

� 

a

b
< 0.794   ,    Ductile 

   (23) 

  

� 

a

b
> 0.794   ,    Brittle  

 
The ductile case will be considered here.  If cases with 

� 

! " 2 were to be considered they 
would be found to always be of brittle failure type.  For values of 

� 

!  between 1 and 2 the 



previous criterion can be used to find the values of a/b for which the ductile or brittle 
condition applies. 
 
 For pressures greater than that in (20) the medium deforms into a plastic interior 
region and an elastic exterior region, with the division at r = 

� 

!.  For the elastic region the 
stresses are given by 
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where A is a constant to be determined.  At r = 

� 

! the elastic stresses must satisfy the 
yield/failure criterion (19), which determines A as 
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For later use it is necessary to have 

� 

!

"

r at r = 

� 

! which is found as 
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 With the elastic region determined, now the stresses in the plastic region will be 
found, being careful to only do this under conditions of ductile behavior.  The governing 
equilibrium equation is 
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d!
r

dr
+
2 !

r
"!
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r

= 0 (27) 

 
Use the yield function (19) to solve for 

� 

!
"

#  and substitute that into (27) giving 
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 (28) 
where 
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This nonlinear differential equation can be integrated to give 

� 

!

"

r as a function of r.  
Carrying out this process, and evaluating the constant of integration such that at r = 

� 

!, 

� 

!

"

r 
from (28) and (29) is continuous with the elastic region stress (26) then gives 
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where 
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Symbol 

� 

!
"

r
r = #

 in (31) is given by (26). 

 
 The boundary conditions at r = a is  
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r = # p
"

   at   r =  a  (32) 
 
which when substituted into (30) gives 
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where 
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 Now the full stress solution in the plastic region has been found, subject to the 
condition that ductile plastic flow occurs, rather than brittle failure.  This will be 
illustrated in a particular example.  Equation (33) provides the relationship between the 
applied internal pressure 

� 

p
!

 and the location of the elastic-plastic boundary, 

� 

!.  Once this 

is known then the stress 

� 

!

"

r follows from (29) and (30) as a function of r.  The other 
stresses follow from (24) and (25). 
 
 Take a particular example of a/b = 1/3 and 

� 

! = 1 which is typical of some metals and 
polymers.  The ductile-brittle criterion (22) applied to the elastic region at r = 

� 

! gives 
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    (35) 
   or 
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< 0.794   ,    Ductile  

 
Thus plastic flow ceases when sufficient pressure has caused the elastic plastic boundary 
to reach the value in (35).  Brittle failure follows thereafter. 
 
 For this particular example the solution given here determines that for first yield 
 
   

� 

p
!

= 0.442   First Yield  
 
and the pressure at which 

� 

! becomes that shown in (35) is  
 

   

� 

p
!

= 1.70   Termination of Plastic Flow

                 Inception of Brittle Failure
 

 
For comparison the solution for a Mises material, 

� 

! = 0, gives 
 
   

� 

p
!

= 0.642   First Yield  
and 
   

� 

p
!

= 2.20   Fully Plastic Yield 
 
The stress components in this solution example for 

� 

! = 1 follow directly from the 
previous results.  The plastic strain increments can similarly be found by using the plastic 
flow potential (6) or the simplified form (7). 
 
 An important characteristic has emerged from this solution and example.  It is that in 
elastic, plastic flow problems, as the flow progresses and the boundary between the two 
regions changes, so to can the conditions existing at the elastic plastic boundary switch 
over from that of plastic flow to that of brittle failure.  Thus the conditions for plastic 
flow, at a particular configuration, can cease to exist and plastic flow is interrupted by 
brittle failure.  Although this behavior was found from the present idealized theoretical 
formulation, physical reality can be expected to at least show some features or aspects of 
this behavior.  This possibility of switching the failure mode and type follows from the 
dependence of the ductile-brittle criterion upon the prevailing state of stress as well as the 
material type.  This complex aspect of physical behavior with regard to the moving 
elastic plastic boundary appears to have been unrecognized before now. 
 
 The corresponding and companion problem of a thick spherical annulus subjected to 
external pressure can be solved by the same general method as that just discussed.  
Yielding first occurs on the inner surface at r = a and the external pressure to cause this is 
given by 
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p
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2

3

1" #( )

1+ $
$ + 1+ $ + $

2[ ] (36) 

 
where 

� 

!  = (a/b)3 as before.  An examination of the ductile-brittle criterion (4) reveals that 
the further deformation is always that of ductile plastic flow for all values of 

� 

! , in 
contrast to the complex situation just discussed for the internal pressurization problem, 
where plastic flow can be interrupted by brittle failure under certain conditions.  An 
example with a/b = 1/3 and 

� 

!  = 1, (36) gives the external pressure at first yielding as 

� 

p
!

= 0.877 , about twice the value required by the internal pressurization case. 
 
 Although the present solutions show that the resulting stresses take more complicated 
forms than in the simplified Mises material case, it is still completely practical to obtain 
such results.  The formulation is well posed and amenable to numerical solution in 
complex problems. 
 



Failure Surface Orientations 
 
 The orientations of failure surfaces reveal specific patterns and signs of behavior.  
Certainly brittle material orientations are expected to be much different from ductile 
material orientations.  This topic will now be examined with the objective to determine 
the failure surface orientations for uniaxial tension and compression as a function of the 
material type, specified by the value of 

� 

!  in (2).  Failure surface orientations in this 
context have been studied before, Christensen (2005), but there was some uncertainty as 
to whether the yield/failure function or the plastic flow potential should be used in certain 
of the operations.  This question can now be formally and finally answered. 
 
 The usual plastic increment under ductile flow conditions is already stated as (5) 
where G is the plastic flow potential.  The failure that occurs at the end of a ductile flow 
process is not simply a continuation of the previous plastic flow.  It is an inherently 
unstable process, and it is here taken to be controlled by the yield/failure function, rather 

than the plastic flow potential.  Take the increment of the failure strain, 

� 

!

•

ij

f

, to be given 
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f

= "
#f ()

#$ ij

 (37) 

 
where f() is the yield/failure function on the left had side of (1).  This should not be 
confused with using the associated flow rule because that terminology only applies to the 
stable ductile plastic flow.  The form (37) is here being applied to the final failure 
process. 
 
 For uniaxial tension, (1) and (37) then give 
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For uniaxial compression (1) and (37) give  
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Now take a rotated coordinate system 

� 

! x 
i
 such that 

� 

1!  is in the plane of the failure surface 

and 

� 

2!  is normal to it.  Let angle 

� 

!  be the angle between the axial direction, 1, and 

� 

1 !  in 



the failure surface.  Then the failure strain increments in the rotated coordinates are given 
by  
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 Take the failure strain increment 
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11

f" 
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& 
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(
 in the plane of the failure surface as being 

non-active and vanishing while the other two increments in (40) give strains that undergo 

unlimited change in the failure process.  Setting 
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!
•

11
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# 
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(
=0 then gives the orientation of the 

failure surface as 
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tan! =
2 + "

1#"
      ,    " $  1, Tension (41) 

 
At 

� 

!  = 1 relation (41) gives 

� 

!  = 90°.  For 

� 

!  > 1 the fracture cutoff (2) comes into effect 
giving brittle failure which results in  
 
   

� 

!  = 90°   , 

� 

!  ≥ 1  , Tension (42) 
 
 For the case of uniaxial compression the rotation of coordinates gives 
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!
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# 
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(

)
= *(2 + +)cos2, + (1* 2+)sin2,  (43) 

 
Similarly to the tensile case, for this failure strain increment in the plane of the failure 
surface taken as inactive and vanishing while the other 2 strain components grow to 
unbounded values then gives the orientation of the compressive failure surface as 
 



   

� 

tan! =
2 + "

1 + 2"
      ,    Compression  (44) 

 
 The failure surface orientations are shown in Fig. 7 as a function of 

� 

! .  At 

� 

!  = 0 (a 
Mises material) the failure surface orientation is at the octahedral angle for both tension 
and compression. 
 
 The uniaxial tensile case shown in Fig. 7 has the ductile versus brittle regions as 
shown.  This behavior coordinates perfectly with the ductile-brittle criterion (4) which 
shows the change over at 

� 

!  = 1 for the case of uniaxial tension. 
 
 In the case of uniaxial compression the ductile-brittle criterion (4) is in the ductile 
range of behavior for all values of 

� 

!  except that it becomes borderline between ductile 
and brittle as 

� 

! "# .  It is interesting to determine the stress components on the failure 
surface at the orientations given by (44).  Let 

� 

! be the normal stress and 

� 

!  be the shear 
stress on the failure surface.  Using (44) and the appropriate coordinate rotations for 
stress it is found that 
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and    (45) 
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 The two failure surface stresses in (45) for values at 

� 

!  = 0, 

� 

!  = 1, and 

� 

! "#  are 
given in Table 1.  It must be remembered that 

� 

!

"

= ! /#  and that 

� 

!  would vary greatly 
over the range of the 

� 

! ’s.  These non-dimensional stresses have a special variation with 

� 

! .  The shear stress shown in Table 1 hardly varies over the full range of 

� 

!  while the 
magnitude of the normal stress diminishes with increasing 

� 

! .  The latter variation can be 
interpreted as the indication that failure surface orientation is such that the compressive 
normal stress on the failure surface tends toward small magnitudes for large values of 

� 

! , 
but has larger magnitudes of 

� 

!

"

 at the smaller values of 

� 

! .  In other words, the magnitude 
of the normal stress is more controlling at large 

� 

! ’s and less controlling at small 

� 

! ’s, 
which is intuitively expected.  Also shown in Table 1 is the ratio 

� 

! /" .  Note that 

� 

! /"  
has a type of anti-symmetry relative to the central point at log 

� 

!  = 0. 
 
 Finally it is perhaps obvious that the yield/failure function rather than the plastic flow 
potential was the correct quantity to use in finding the failure orientations.  If the plastic 
flow potential (7) were used, the failure surface orientations would have been unvarying 
with respect to 

� 

! , always at the octahedral angle and the same in compression as in 
tension. 
 



Conclusions 
 
 The previous results will not be summarized here other than to broadly say that this is 
an approach to the difficult problem of characterizing yielding and failure for general 
materials.  The central focus has been to distinguish brittle failure from ductile yielding 
type response.  It has always been known that this discrimination must depend upon a 
specification of the material type but the present work also shows that this distinction 
crucially depends upon the type of stress state under consideration.  For example, shear 
stress gives a different result than does uniaxial tension.  When one brings in the full 
stress tensor, the number of possible combinations becomes boundless and a generalized 
approach becomes necessary.  These resulting special cases display a great variety of 
different ductile-brittle transition circumstances, many of which have been examined here 
and shown to be of importance. 
 
 It is of some relevance to consider which single stress state, if any, best characterizes 
a simplified but realistic form of the ductile-brittle characteristics of materials.  Uniaxial 
tension certainly is the logical choice.  From the yield/failure criterion (1), for uniaxial 
tension it follows that 
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"

11

T

=
1

1+ #
 (46) 

 
Substituting this into the ductile-brittle criterion (4) gives 
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!  < 1   ,   Ductile (47) 
or 
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T

C
>

1

2
   ,    Ductile  (48) 

 
For 

� 

!  > 1, the response in this stress state is brittle.  This gives the transition in failure 
type for uniaxial tension as being at the value 

� 

!  = 1.  This is the same value as for the 
inception of the fracture criterion in (3).  The value of 

� 

!  = 1 is at the center of the log 

� 

!  
scale.  For simple shear stress, criterion (4) directly shows that its transition is at 

� 

!  = 2.  
Other stress states show widely varying values of 

� 

!  at which their ductile to brittle 
transitions occur. 
 
 At an application level, often no attempt is made to distinguish ductile and brittle 
responses, other than by intuitive guidelines.  In this situation failure would be considered 
in an inclusive sense as encompassing both yielding and complete rupture.  Then the 
previous results could simply be designated as generalized failure criteria.  In this case 
everything needed is directly specified by conditions (1)-(3), rewritten here in terms of 
components as 
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and 

   
!

1
" T    if   T "

C

2  (50) 
 
where 

� 

!
1
 is the largest principle stress.  Whichever of (49) or (50) is the more limiting 

determines the failure condition.  Relations (49) and (50) are as easy to use as are the 
Mises or Tresca criteria, but (49) and (50) have far greater generality.  The Mises 
criterion corresponds to (49) with T = C while (50) is seen to be inapplicable at T = C. 
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 Table 1.  Stresses on Failure Surfaces, Eqs. (45) 



 
 
 

 
  Figure 1 Biaxial Stress State 
 
 
 
 



 
 
 
 
 
 

 
  Figure 2 Brittle Failure and Ductile Yield/Failure 
 
 
 
 
 



 
 

 
  Figure 3 Mises Material, 
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!  = 0, Ductile Yield 
and Brittle Failure Regions 

 
 
 
 
 



 
 

 
  Figure 4 Yield/Failure Paraboloid 
 
 



 

 
  Figure 5 Shear Stress Superimposed Upon 

Presure, 

� 

! "#  Limit, Eq. (12) 
 
 
 



 

 
  Figure 6 Spherical Annulus with Internal Pressure 
 
 
 
 



 
 

 
  Figure 7 Failure Angles, Uniaxial Tension and Compression 


